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ABSTRACT 

Uncertainty effects on the stability of  fluid--structure coupled systems have been investigated at ONERA 
for more than a decade. Stability of the coupled system aircraft/aerodynamics is a key issue in airplane 
manufacturing. During the design stage of an airplane, many structural parameters are not clearly fixed 
nor known, but nevertheless the final project must comply to the various international certification 
regulations. One popular approach to deal with this problem is to model the parametric uncertainties 
through random variables. Then one has to study the stability of a random parameter dynamical system. 
After presenting the various steps developed at ONERA in order  to construct an effective numerical 
procedure which can be utilized together with standard structural and aerodynamic  codes by  
manufacturers, we focus on various models for introducing  uncertainty in an elementary stiffness  matrix.  
It is shown that a chaos polynomial representation of the matrix whose coefficients are estimated through 
Monte Carlo simulation yields a better approximation for the matrix and its eigen values than a Taylor 
expansion which is currently used in the literature. The method is then applied to an aircraft model. 
.Besides conception uncertainties there exist other source of uncertainties appearing in an aircraft: we 
give two illustrations related to aerodynamic and aeroservoelastic applications. 

1.0 INTRODUCTION 

Stability of the coupled system aerodynamics/aircraft is a key issue in aircraft manufacturing. During the 
design process of a new airplane, many structural parameters are not yet frozen and designers must show 
that, within the entire range of possible parameter values, the airplane will not encounter unstable motions 
in the flight domain. The parameter uncertainties are modelled as random variables whose distributions are 
chosen according to available manufacturer knowledge: for instance, the Young modulus of certain carbon 
materials can vary quite significantly from a sample to another, and due to the limited set of data available, 
the dispersion of this parameter can be important, leading to a maximum uncertainty up to 100\%. The 
critical or flutter speed is defined as the lowest aircraft speed, if any, for which the plane becomes 
unstable. When random parameters are introduced in the model this quantity becomes a random variable 
which has to be characterized: mean value, standard deviation, probability distribution … Moreover the 
notion of stability needs to be replaced with the notion of "flutter probability". From perturbation 
techniques to Monte Carlo simulation (MCS) methods, there exist several methods [5,7,8] which can be 
used to characterize the probabilistic flutter speed, depending on the numerical effort that manufacturers 
can afford, the least expensive one giving of course the crudest results. Those methods have been 
developed and  tested at ONERA on realistic models of airplane. This paper will go over their 
descriptions, highlighting the pros and cons of each one, keeping in mind the manufacturer requirement of 
the computational efficiency and accuracy. Finally a method based on MCS and basis reduction will be 
proposed. It is based on a polynomial chaos expansion of the random matrices. An illustration on a 20000 
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DOF airplane model is then illustrated. Here, it is the elasticity values  of the wing structure  which are 
considered uncertain. Taylor and polynomial chaos approaches are used to estimate second order statistics 
of the generalized stiffness matrix (four elastic modes are considered). Results are compared and 
discussed. The model is then introduced in the flutter equation. Another point which is considered is the 
problem of aerodynamic uncertainties: where do they have to be introduced? Considering a 2 degree of 
freedom airfoil, we study the effect of shape uncertainties on the stability diagram. We end with the study 
of uncertain time delay effect in an aeroservoelastic problem. 
 

2.0 PARAMETRIC UNCERTAINTY PROPAGATION 

2.1 Aeroelastic Model 
The flutter equation depicts the coupling between the structure (airplane) and the fluid (aerodynamic 
forces). This coupling can induce either sustained bounded oscillations (limit cycles) which contribute to 
overall aircraft fatigue, or explosive and destructive oscillations (divergent flutter). Formulating the 
problem mathematically requires writing the fluid equations, the structural equations and the interactions 
at the different interfaces.  
The coupling aerodynamic forces A  between fluid and structure are assumed to be known and are 
considered as particular external forces. Using a finite element model of the airplane, the flutter equation 
can be written:  
 ( ) ( ) ( )Mu x t Ku x t A u u u t, + , = , , ,  (1) 
Due to the dimension of the FEM (up to 106 DOF), the equation is written using the modal basis of the 
structure. The motion of a point x  of structure  is expressed as a finite linear combination of eigen 
modes, retaining the N  first low-frequency modes:  

 
1

( ) ( ) ( )
N

j
j

j

u x t q t x
=

, = Φ ,∑  (2) 

where ( ) 1j x j NΦ = , , is a finite family of elementary displacement vectors which satisfy the following 
properties:  
 2 0j j

j M Kω− Φ + Φ = ,  (3) 

 
 2j j

j j j j jM Kµ δ µ ω δ, ,< Φ ,Φ >= < Φ ,Φ >= ,  (4) 

where M  and K  denote the respective associated mass and stiffness linear operators. In the frequency 
domain, the flutter equation can be written in the modal basis:  
 2( ) ( ) ( ) ( )q i V qω µ κ ω α ω ω− + = ,  (5) 
where µ  and κ  are the N N×  diagonal generalized mass and stiffness matrices, 

1( ) ( ( ) ( ))Nq …q qω ω ω= , ,  is the vector whose coordinates are the Fourier transform of the generalized 
coordinates ( ) 1jq t j N, = , , ( )i Vα ω,  is the N N×  complex generalized aerodynamic coefficient matrix 

due to the aircraft motion, for a given speed V . Structural damping, which is usually not well known, is 
not introduced in what follows.  
The generalized aerodynamic forces depend on any structural uncertainty introduced in the dynamic 
model. Let 1( )N…ε ε ε= , ,  represents N  uncertain independent parameters. Equation (5) has to be 
replaced with:  
 2( ( ) ( ) ( ) ( ( ) )) ( ) 0p p V Xε µ ε κ ε α ε ε+ − , =  (6) 

( ) ( ) ( )p iε ξ ε ω ε= + ∈ , ( ) NX ε ∈  where the new generalized matrices depend on the uncertain 
parameters. N  is the number of modes retained ( 50N ≤ ). The aircraft stability at a fixed speed V  is 
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driven by the sign of ( ) Real( ( ))pξ ε ε=  for any solution ( )p ε . The uncertain parameters are idealized 
as random variables whose probability distribution is chosen for instance following the maximum entropy 
principle [6].  
 

2.2 Monte Carlo Simulation Approach 
The prodigious development of digital computer has established the Monte Carlo simulation method as the 
most reliable, general purpose approach in stochastic mechanics. Accurate solutions can be obtained for 
any problem whose deterministic solution (analytical or numerical) is known: a large number of 
realizations of the random parameters are generated based on their known statistical description (this 
generation can be done directly in the FEM data file) and to each realization a result (the solution of the 
flutter equation) is calculated as in deterministic analysis. Finally the results are examined by statistical 
methods. The method is however time consuming since the computation of each realization requires a full 
finite element analysis (in order to construct the updated modal basis) together with a full aerodynamic 
computation.  

  
 

Figure 1: Monte Carlo procedure 
 

2.3 Perturbation Approach 
Each solution of the flutter equation is perturbed about the mean value of the uncertain parameters through 
a second-order Taylor expansion around the mean value of the uncertain parameters obtained for 0ε= :  

 
2

1 1

( ) (0) (0) (0)
N N

j j l
j j lj j l

p pp pε ε ε ε
ε ε ε= , =

∂ ∂
≈ + +

∂ ∂ ∂∑ ∑  (7) 

The main difficulty is the determination of the various derivatives appearing in the above equation. The 
first order derivatives can be obtained directly through NASTRAN aeroelastic package. Algebraic 
expressions for the second order derivatives can be written but they lead to intractable calculations and 
they have to be calculated numerically. The flutter probability is then defined for a given speed by:  
 {Real( ) 0}P{Real( ) 0} ( ) ( )

N pp P dεε ε≥> = ∫  (8) 

and can be calculated analytically or numerically using the above Taylor expansion. However, despite its 
numerical efficiency, it does not give accurate enough results and moreover is mathematically valid only 
for small uncertainties. In [8] is highlighted the discrepancy of the standard deviation of the flutter solution 
real part when this method is used compared to the MCS reference solution after having introduced 
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thickness uncertainty in the wing panels. Moreover it is shown that a second order expansion does not 
improve the accuracy compared to a first order expansion for this particular example.   
 

2.4 Projected Monte Carlo Approach 
In order to suppress the necessity of computing the new modal basis at each realization of the random 
parameters in the MCS method, a simple idea is to represent all the generated mechanical system using an 
unique basis: the mean (or nominal) modal basis (0) ( (0))j

jΦ = Φ  which is constructed from the zero 
uncertainty structural model. The uncertainty effects will then appear only through the generalized 
matrices ( ) (0) ( ) (0)T Mµ ε ε=Φ Φ  and ( ) (0) ( ) (0)T Kκ ε ε=Φ Φ  expressions in equation (5). Of course 
one needs to describe the dependency of the applications ( )ε µ ε  and ( )ε κ ε , which is achieved 
using a first order Taylor expansion :  

 0
1

( ) (0) (0) ( ) (0)
i

N
T

i
i

Mε εµ ε µ ε ε =
=

≈ + Φ ∂ | Φ∑  (9) 

 

 0
1

( ) (0) (0) ( ) (0)
i

N
T

i
i

Kε εκ ε κ ε ε =
=

≈ + Φ ∂ | Φ∑  (10) 

The sensitivity matrices ( )
i
Mε ε∂  and ( )

i
Kε ε∂  can be evaluated relatively easily using specific routines 

of FEM codes such as for instance NASTRAN. The aerodynamic forces depend only on the wing 
geometry and therefore the generalized aerodynamic matrix α  has, in this approach, to be constructed 
only once (if the aerodynamic surfaces are fixed). This approach is numerically very efficient since one 
has to solve a low dimension problem described by equation (6) using a MCS method. Nonetheless it 
suffers two major weakness: the first one is that expansions (9) and (10) are meaningful only for small 
uncertainties. The second one is that the mean modal basis may not be representative enough to allow the 
representation of all the randomly generated systems mode shapes[8] . 
 

2.5 Extended Modal Basis 
In order to work out the second weakness of the projected MCS method, a natural approach is to consider 
a richer or more representative basis on which the flutter equation will be projected. But due to the specific 
mechanical interpretation of the modal basis and since aerodynamics codes are developed in this context, 
it is convenient to keep the mean modal basis as the core of the new basis and to complete it with a set of 
linearly independent vectors. The choice for those vectors are arbitrary but a judicious one is to consider 
the derivative vectors 0( )

kε
∂Φ
∂ |  which characterize the sensitivity of the mode shapes respectively to each 

uncertain parameter. Moreover the derivative of the modes can be directly obtained in FEM codes. The 
extended modal basis approach involves therefore the projection of the flutter equation on the 
basis [ (0) ]Θ= Φ ,Ψ  where (0)Φ  is the mean modal basis and Ψ  is a set of independent vectors extracted 
from the family 0( )

kε
∂Φ
∂ | . Once the new generalized matrices are constructed, the simulation procedure is 

exactly the same as in the projected MCS method. Moreover, when projecting the new equation in the 
modal basis of the reduced mechanical system { (0)t MΘ Θ , (0) }t KΘ Θ , it is possible to work again 
within the classical framework of physical structural modes.  
 

2.6 Hermite Polynomial Chaos Projection 
Our goal now, is to find a better probabilistic description or model of the random generalized matrices 
which could be used for the projected MCS method. Hermite polynomial chaos decomposition is a 
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technique commonly used to express a random function in terms of Gaussian variables. Let ( )j jξ ξ ∈=  a 
set of orthonormal Gaussian random variables defined on a probability space ( )F PΩ, , . Then any square 
integrable random function ( )fω ωΩ∋  can be approximated in the Hilbert space 2 ( )L Ω  by :  

 0 1 2( ) ( ) ( )i i i j i j
i i j

f f f f …ω ξ ξ ξ,
,

= + Γ + Γ , +∑ ∑  (11) 

where IΓ  are Hermite polynomials: 1( )i iξ ξΓ = , 2 ( )i j i j i j …ξ ξ ξ ξ δ ,Γ , = − ,  and where 

f =k ( ( ))pE f ξ×Γ k  for any multi-index 1( )pk … k= , ,k  and E  denotes the mathematical expectation 
operator. Applying this expansion method to our problem, the Taylor’s expansion (9) and (10) have to be 
replaced with truncated expansions which can formally be written:  

 0 0
1 1

( ) ( ) ( ) ( )
Q Q

I I Q I I Q
I I

µ ε µ µ ξ κ ε κ κ ξ
= =

≈ + Γ ≈ + Γ∑ ∑  (12) 

where Qξ  denotes a finite family of ξ . The difficulty of this approach lies in the determination of the 

expansion coefficients ( ( ))I IEµ µ ξ= ×Γ  and ( ( ))I IEκ κ ξ= ×Γ . They are given mathematically by 
integrals involving the probability distributions of the random vectors [ ( ) ]Qµ ε ξ,  and [ ( ) ]Qκ ε ξ,  which 
are unknown in the general case. But they can also be numerically estimated using a MCS method which 
will generate samples of the random vector [ ]Qε ξ, . Unfortunately the distribution of this vector is not 

known either. One solution is to express each random parameter iε  itself as a function of Gaussian 
variables. This can be done for a very large class of well behaved random variables Y , using relation:  
 1[ ( )]Y GY F F G−=  (13) 

where G  is a standard normal random variable, GF  and YF  the cumulative distribution function of G  
and Y  respectively. Other direct transformations can be written. For instance, if U  has a [0 1],  uniform 
distribution then it can be expressed in terms of two orthonormal Gaussian variables:  

 2 2
1 2

1exp ( )
2

U ξ ξ
−

= +  (14) 

The polynomial chaos expansion of U  can be readily obtained using the exponential function series:  

 
2 2

1 2

0

( )1( )
2

n
n

n

U
n

ξ ξ∞

=

+−
= .

!∑  (15) 

This last example is interesting for our particular problem since uncertain parameters are usually modeled 
through uniform distributed random variables. In that case each matrix ( )µ ε  and ( )κ ε  can be expressed 
as a polynomial chaos expansion involving exactly 2 N×  Gaussian orthonormal random variables. And 
now the coefficients of expression (12) can be estimated very easily using simulations of the independent 
Gaussian variables 1( )M…ξ ξ ξ= , , :  

 
1

( ( )) 1 ( ) ( )
N

I I IE Nκ κ ξ κ ξ ξ
=

= ×Γ ≈ / ×Γ∑  (16) 

where ξ  denotes a generated value of Gaussian vector . 
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2.7 Illustration 
 

 
 

Figure 2: 20000 DOF airplane finite element model - 4 uncertain material elasticity parameters  
 

We consider a 20000 DOF airplane model (Fig. 2) in which the elasticity of four wing materials is 
considered uncertain and modeled as independent random variables (only the red part of the airplane 
model is described with a fixed elasticity value): 0 (1 )i i iuε ε α,= + , 1 4i = , , where iu  are [0 1],  uniform 

random variables and iα  are uncertainty coefficients. In this model, the lowest elasticity values are fixed. 
In a first stage we look at the generalized stiffness matrix statistics ( )κ ε  when four elastic modes are used 
for the projection onto the truncated modal basis. The reference solution is constructed using the complete 
MCS method described in section 3. Then, using sensitivity matrices obtained in NASTRAN, a first order 
Taylor expansion is constructed for matrix κ , (relation 10). Finally a second order polynomial chaos 
expansion (relation 12) is constructed, its coefficient being estimated using a MCS method, (relation 16). 
This last model yields a diagonal matrix when the linear perturbation model gives a non diagonal one. In 
the following applications, comparisons between the eigen values of the two models will be given. The 
reference solution is estimated using 900 samples when a relative uncertainty of 40 % is introduced in the 
model, 4iα =. . The polynomial chaos coefficients are estimated using 200 samples. The two models are 
then used in order to generate 1000 samples of the random generalized stiffness matrix. The mean value 
and standard deviation of each of the four eigen values are finally estimated from those last samples. Table 
4 gives the relative error (relatively to the reference solution) for those estimates. Those last results 
emphasize the influence of the estimate accuracy of the chaos expansion on the model overall accuracy. 
This can bring a limitation to the method if a large number of samples are needed. In that last case it is 
better to use the standard MCS method.  
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Table 4. Eigen value mean value relative error                                      Table 5. Eigen value standard deviation relative error   
 
One can all ready notice the good behavior of the polynomial chaos model which gives a better estimate 
for the eigen value mean values. However the errors on the standard deviation are of the same order than 
those obtained using the Taylor’s model. The standard deviation errors decrease as the number of samples 
used increase, as it is illustrated on figure 3 where the error (mean value and standard deviation) evolution 
for each eigen value versus the number of samples is plotted, together with the errors corresponding to the 
Taylor’s approach. The next step is to introduce the polynomial chaos expansion model of the stiffness 
matrix (relation (12)) into the flutter equation 5. A reference solution is constructed using a complete MCS 
method as described in section 3. Nine hundred samples (necessitating around two dozen hours of 
calculation on a workstation) are used in order to obtain the "mean flutter diagram" given in figure 4. The 
plain lines represent the mean values while the dotted lines represent the quantity ( ) pE p σ±  for each 
solution p  of the flutter equation. The two models, Taylor and polynomial expansion, are then compared 
in respectively figure 5 and figure 6. One can check that the linear perturbation approach (Taylor) does not 
give the general behavior of the reference solution, contrary to the second model. The chaos coefficients 
used in the later were estimated using 400 samples, and the statistics appearing on the figure were 
estimated over 1000 samples. Compared to the reference case, it yields more scattered results, but a good 
estimation of the mean values. The deviation tends to increase when fewer samples are used in order to 
estimate those coefficients. Finally, if we go back to the reference solution obtained using a complete 
MCS method, it appears that the second order statistics converge rapidly respectively to the number of 
samples: in figure 8, we have plotted for each mode the evolution of its damping second order moment for 
each speed value introduced in the flutter calculation with respect to the number of simulation. One can 
check that convergence is obtained after 400 simulations. This last figure is to be compared to the number 
of samples used to estimate the polynomial chaos coefficient.  

 2.8 Remarks 
Because flutter calculations involve highly nonlinear equations, MCS methods are the more appropriate 
ones for introducing random uncertain parameters in the model and evaluating their impacts on the 
stability of the coupled system aircraft/aerodynamics. Even if the complete MCS method will give the 
more accurate results, nevertheless reduced methods are required today in order to address the 
computational cost due to the high dimension of the finite element models used by manufacturers. A 
feasible and effective approach has been presented, based on the construction of an unique representative 
basis on which the flutter equation is projected. Moreover, in order to obtain a more accurate 
representation of the uncertainty propagation in the various structural matrices, the use of Hermite 
polynomial chaos has been suggested, instead of the classical first order perturbation technique. A simple 
example has shown the benefit of this approach, together with some of its difficulties. As far as this study 
in concerned, it appears that a second order polynomial chaos expansion is sufficient to obtain satisfactory 
results. The second application on a realistic case has shown the feasibility of the polynomial chaos 
approach for modeling random structural matrices in real life engineering structures, but has also 
highlighted the importance of using accurate coefficients in the expansion. Since those coefficients are 
obtained numerically (either using adapted numerical integration methods when few uncertain parameters 
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are involved or   using MCS as soon as more than four parameters are introduced) for nonlinear problems, 
particular efforts are still  needed to improve   their  accuracy and limit their computational cost.  Finally 
the question arises whether such simplified approaches should be used, at least for middle size (several 
dozens of thousand degrees of freedom) models are involved, since MCS methods appear to converge 
rapidly (at least for the flutter problem and since the computational power of computers increases 
continuously. 

  
 

Figure 3: Effect of the number of samples on the estimation errors 
 

 
  

Figure 4: Full MCS method - mean and std                  Figure 5: Taylor approach - mean and std 
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Figure 6: polynomial chaos - mean and std 

3.0 AERODYNAMIC UNCERTAINTY 

Contrary to structural uncertainties, it not so easy to localize relevant aerodynamic parameters where 
uncertainty can be introduced. Should they model the discrepancy between different aerodynamic codes, 
the effect of simplification assumptions or more physical aspects such as the position of the shock on an 
airfoil or the coefficient of pressure? Moreover the difficulty comes from the fact that solutions of the 
flutter equation do not depend in a functional way on those aerodynamic coefficients since aero dynamical 
forces are obtained by numerical integration of complex equations such as Euler or Navier Stokes 
equation. This problem will be clarified by considering the simple configuration of a two-dimensional 
airfoil. In that case, the sole aerodynamic parameter which has to be considered is the airfoil geometry. 
After having defined the flutter problem considered, a random field modeling airfoil geometric 
deformations will be constructed, then a Monte Carlo simulation method will be described and applied on 
a given airfoil. Results will show the effects of geometric defects on the coefficient of pressure and on the 
flutter equation solutions.  
 

3.1 Random Deformation of a Two-Dimensional Airfoil 
The goal of this section is to define random deformation of an airfoil profile which could depict for 
example processing imperfections yielding local modifications of the airfoil slope with humps and 
hollows. The common way to describe a profile P  is to define a finite number of points 

1 2{ }pM M … M, , ,  laying on it. Two different approaches can be utilized in order to generate random 
fluctuation of a profile geometry. The first one is to change randomly and independently the position of 
each point describing the profile. This approach will introduce very strong discontinuities in the profile 
slope, which could bring serious convergence problems in the aerodynamic codes. Moreover it is 
dependent on the number of points used to describe the profile. The second approach is to consider a 
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continuous deformation field d;  ( )M d M M P, ∈ . The deformation at a point M P∈  is equivalent 
to a modification of the local curvature at that point and therefore will be defined by a normal vector at 
point M .  

 
Figure7. Deformation field 

Definition  Let P  a profile defined by a 2kC k, ≥  curve parameterized by arc-length. The deformation 
random field d  of profile P  is modeled by a second-order, zero-mean, mean-square continuous random 
field, indexed on the curve P  with real values.  
Let P  be a given profile. Its random deformation is defined by the following application  
 ( ) ( )M M d M n M M P+ ; ∈    
where ( )n M  is the normal vector at point M  on the profile.  
Let ( ) ( ( ) ( ))dR M M E d M d M′ ′, =  denote the random deformation autocorrelation function.  
The deformation d(M) is numerically simulated using its Karhunen Loeve Expansion: 

1

( ) ( )M P d M Mα α α
α

λ ξ φ
≥

∀ ∈ , =∑  

where ( ') ( ') ' ( )dP
R M M M dM Mφ λφ, =∫  and where  1 2 … …αξ ξ ξ, , , ,  are uncorrelated random 

variables given by  
1 ( ) ( )

P
d M M dMα α

α

ξ φ
λ

= < , > .∫  

3.2 Illustration 

We consider the NACA64A010 profile defined through 132p =  points kM , with the parameter x  of the 
curve taking its values in [0 1]I = , .  
The autocorrelation function of the deformation random field ( ( ))d M x  is chosen as:  
 2( ) exp( )dR x x C x xσ′ ′, = − | − | ,  (16) 

with a standard deviation 1σ=. . The correlation length depends on the value of parameter C : the greater 
it will be, the more independent will be the deformation between two points on the profile. The following 
two figures show an example of  the deformation field effect when 1C =  and 100C = .  
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Figure 8. Deformation field for 1C =                                           Figure 9. Deformation field for 100C =  

A Monte Carlo procedure is utilized in order to perform an aerodynamic calculation (Euler equation) for 
each generated deformed profile. The correlation constant was fixed to 4C = , and 1000 simulations were 
performed. 

 
Figure 10. Pressure coefficient - 1000 simulations  

Figure 9 represents the scattering of the different pressure coefficient evolution curves versus the position 
on the airfoil for the different shape perturbed airfoil. The different curves are rather jagged, which results 
from the fact the pressure coefficient is proportional to the airfoil slope. However the shock position does 
not change dramatically. 

The flutter speed (or critical speed) where the coupled system becomes unstable, is a random variable 
which histogram is given on figure 11.  
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Figure 11. Critical speed histogram  

 

4.0 UNCERTAIN TIME DELAY IN CONTROLED SYSTEMS 

The use of active control technology significantly enhances aircraft stability and response, at reduced 
structural weight. In particular, future high capacity aircraft will be characterised by   overlapping of rigid 
and flexible modes which will induce severe interactions between the structure and controls. The effects of 
fly-by-wire controls on flutter must therefore be examined carefully. 
A particular aspect of this problem is the influence of time delays which causes unsynchronized 
application of the feedback control force and consequently can render the control ineffective and 
furthermore may destabilise the system. Fly-by-wire controls give rise to many sources of time delays 
which occur for instance during data acquisition, control law computation time, data transfer,  etc. The 
numerical values of those delays can be determined once the sampling rates and number of computers are 
known. 
When  redundant calculations are performed as it is the case for modern transport aircraft for which safety 
policy requires using several different data processor channels to calculate  the same quantities in order to 
cater for failure of one of the computers, the time delay values vary during flight. Whereas a known and 
constant time delay can be compensated for --- the study of  delayed systems has received considerable 
attention in the control theory community} --- this is not true for unknown time-varying ones. Moreover 
the classical frequency domain approach using the Laplace transform can no longer be used and a direct 
analysis of the time domain response of the system has to be made in order to study the stability.   
The purpose of this section is to show that in this case flutter   can be analysed by borrowing a numerical 
stochastic analysis tool developed for studying the stability of stochastic dynamical systems. This 
approach is based on the fact that a linear differential equation   with    random time delay can be seen in a 
certain functional space as an infinite-dimensional linear differential equation with stochastic 
multiplicative noise. Once discretized, this equation is approximated by a finite-dimensional linear system 
with a random matrix which describes the motion of a discrete dynamical system with multiplicative 
noise. The stability of its solution can then be studied using the stochastic Lyapounov exponent method. 
This method does not yield the usual flutter diagram showing the variation of the damping and frequency 
of each mode but instead gives a stability domain in terms of delay values and aircraft speeds. 
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In practice the closed loop control law uses the value nX  of the observation sampled at time nt n t= ∆   to 
compute the value nU  of the  control at the same time. 
But due to the time required to perform the various calculations and samplings there exists a delay ξ  
between the moment when the value of the control should be available and the moment when it is 
effectively available. For complex controlled systems such as the ones encountered on modern fly-by- 
wire aircraft, this delay is unknown and depends moreover  on  the time  nt  when the calculation occurs.  

Therefore the delay at time nt  can be seen as a random variable ( );n a a Aτ ∈  defined on a given 
probability space ( , , )A PT .  Letting the time step to approach 0, the delay can be modelled as a real-
valued stochastic process ( , )t aτ . The aeroservoelastic system equation can be written as a delayed 
differential equation with random delays. 

( ) ( ) ( )X t AX t BX t τ= + −  
It can be shown [4,9,12]  that there exists a linear operator ( )L L C∈ ,  such that any solution of the 
delayed equation ( ) ( ) ( )x t Ax t Bx t τ= + −  is also a solution of the functional delayed equation  

 ( ) ( )t
d x t L xdt

= .  

Operator L  is given by :  
0

[ ( )] ( ) withL C d tθ
τ

φ η θ φ θ
−

: → , ,∫  

 

 
( ) ( )

( ) ( ) 0
0 0

A t B t
t A t

θ τ
η θ τ θ

θ

− − − ,, = − − < < =

 

 

where  
def

( ) ( ); 0t x tx θ θ τ θ+ − ≤ ≤=  

This formalism can be extended to the case of a time varying random delay ( )t aξ , . Finally, a linear 
random-delayed differential equation can be written as a linear stochastic system with multiplicative noise:  

 ( ) ( ( ) )t
d x t L t a xdt

ξ= , , .  

When working in the time domain, the flutter equation reduces to the stability study of a one-parameter 
(speed or pressure) dynamical system describing the aeroservoelastic equation. When the system is also 
linear, stability results are obtained immediately by looking at the characteristic equation roots. In the case 
of a random delay, stochastic tools must be used. Let a linear dynamical system be described by the 
following equation,  
 0 0( ) ( ), (0) , ( ) nx t Ax t x x x t x= = , ∈ .  

The stability property characterizes the proximity of two solutions 0( )x t x,  with close initial values. In the 
same way, the asymptotic stability characterizes the long term behavior of the solution: the zero solution 
( (0) 0x = ) of equation ( ) ( )x t Ax t=  is said to be asymptotically stable if for all small initial values 
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0x η|| ||≤ , 0( ) 0x t x|| , ||→ , when t →+∞ . The following result characterizes such systems: the zero 
solution is asymptotically stable if and only if the eigen values of matrix A  have negative real parts. If no 
delays occur in the various control systems when using a state space model for the unsteady aerodynamic 
forces, the aeroservoelastic system motion is driven by a linear differential equation, and its stability is 
obtained trivially using this last result. The notion of asymptotic stability can be extended for delayed 
differential equations. Concerning stochastic differential equations, the almost sure stability notion is used: 
the zero solution of a linear differential equation with multiplicative noise is called almost surely (a.s.) 
asymptotically stable if for almost all fixed a A∈  the solution ( )t x t a,  is asymptotically stable.  
The next result generalizes the classical result: a linear stochastic system ( ) ( ( )) ( ))x t A t a x tξ= , , 

0(0)x x=  is a.s. asymptotically stable if and only if  
 0Prob(lim ( ) 0) 1

t
x t x a

→∞
|| , , ||= =  

for all initial value 0
nx ∈ .  

The Lyapounov exponent gives an effective tool for studying stochastic system stability. Definition  The 
Lyapounov exponent of a solution 0( )x t x,  of a linear stochastic differential equation is defined by:  

 0 0
1( ) lim log ( )

t
x a x t x a a A

t
λ

→∞
, = || , , || ∈  

It is a random variable which depends on the initial value 0x  and may be interpreted as the exponential 
growth rate of the solution. The last result characterizes asymptotically stable solutions using Lyapounov 
exponents. a linear stochastic system is a.s. asymptotically stable if and only if  
 

0
00

Prob(max ( ) 0) 1
x

x aλ
≠

, < =  

Additional smoothness assumptions must be made for the random noise ( )t aξ ,  to have access to effective 
tools. In this paper, the noise is modeled as the solution of an Ito stochastic differential equation:  
 ( ) ( ) ( ) ( )d t a t dt b dW t tξ ξ ξ= + ∈ .  

In this case, it can be shown that the random variable 0( )x aλ ,  has only a finite number of values  
 0 1 1 max( ) { }q qx a …λ λ λ λ λ−, ∈ < < < = .  

The system stability then depends on the sign of the greatest Lyapounov exponent maxλ .  
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Fig.12 Stability of an aeroservoelastic system with random delay (Poi94b) 

5.0 CONCLUSION    

Uncertainty appears in many places in aeroelasticity: structural parameters, wing geometry, control 
systems… Taking into account structural uncertainty during the design process of an aircraft is a 
mandatory stage in view of  flutter certification. Because flutter calculations involve highly nonlinear 
equations, MCS methods are the more appropriate ones for introducing random uncertain parameters in 
the model and evaluating their impacts on the stability of the coupled system aircraft/aerodynamics. Even 
if the complete MCS method will give the more accurate results, nevertheless reduced methods are 
required today in order to address the computational cost due to the high dimension of the finite element 
models used by manufacturers. A feasible and effective approach has been presented, based on the 
construction of an unique representative basis on which the flutter equation is projected. Moreover, in 
order to obtain a more accurate representation of the uncertainty propagation in the various structural 
matrices, the use of Hermite polynomial chaos has been suggested, instead of the classical first order 
perturbation technique. A simple example has shown the benefit of this approach, together with some of 
its difficulties. As far as this study in concerned, it appears that a second order polynomial chaos 
expansion is sufficient to obtain satisfactory results. The second application on a realistic case has shown 
the feasibility of the polynomial chaos approach for modelling random structural matrices in real life 
engineering structures, but has also highlighted the importance of using accurate coefficients in the 
expansion. Since those coefficients are obtained numerically (either using adapted numerical integration 
methods when few uncertain parameters are involved or   using MCS as soon as more than four 
parameters are introduced) for nonlinear problems, particular efforts are still  needed to improve   their  
accuracy and limit their computational cost.  Finally the question arises whether such simplified 
approaches should be used, at least for middle size (several dozens of thousand degrees of freedom) 
models are involved, since MCS methods appear to converge rapidly (at least for the flutter problem) and 
since the computational power of computers increases continuously. Introducing purely aerodynamic 
uncertainties is a more delicate process. Here we have shown that a Monte Carlo procedure coupled with a 
non linear Euler solver could permit to take into account geometric uncertainties for a 2 DOF airfoil. The 
cost for such an approach is however expensive and it seems unlikely that it could be extended do 3D 
structures. Finally we have shown the possibility of taking into account uncertain time delays in controlled 
systems.  
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Paper No. 38 
 
Discusser’s Name: L. Fatini 
 
Question: (1) If the aerodynamic problem is solved in 2-D, how can the structural problem be solved 
considering the torsion of the wing? (2) Do you have any experimental results? (3) What kind of materials 
did you use for the models? 
Author’s Reply: (1) Not solved. (2) No. (3) Metallic. 
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